On best approximation in Lp spaces

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BEST SIMULTANEOUS APPROXIMATION IN FUZZY NORMED SPACES

The main purpose of this paper is to consider the t-best simultaneousapproximation in fuzzy normed spaces. We develop the theory of t-bestsimultaneous approximation in quotient spaces. Then, we discuss the relationshipin t-proximinality and t-Chebyshevity of a given space and its quotientspace.

متن کامل

t-BEST APPROXIMATION IN FUZZY NORMED SPACES

The main purpose of this paper is to find t-best approximations in fuzzy normed spaces. We introduce the notions of t-proximinal sets and F-approximations and prove some interesting theorems. In particular, we investigate the set of all t-best approximations to an element from a set.

متن کامل

Best Basis Selection for Approximation in Lp

We study the approximation of a function class F in Lp by choosing first a basis B and then using n-term approximation with the elements of B. Into the competition for best bases we enter all greedy (i.e. democratic and unconditional [20]) bases for Lp. We show that if the function class F is well oriented with respect to a particular basis B then, in a certain sense, this basis is the best cho...

متن کامل

Best Simultaneous Approximation in Lp(I, E)

Let G be a reflexive subspace of the Banach space E and let L(I, E) denote the space of all p-Bochner integrable functions on the interval I=[0, 1] with values in E, 1 [ pO.. Given any norm N(· , · ) on R, N nondecreasing in each coordinate on the set R +, we prove that L (I, G) is N-simultaneously proximinal in L(I, E). Other results are also obtained. © 2002 Elsevier Science (USA)

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 1987

ISSN: 0021-9045

DOI: 10.1016/0021-9045(87)90117-1